Convex feasibility modeling and projection methods for sparse signal recovery

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex feasibility modeling and projection methods for sparse signal recovery

A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimizati...

متن کامل

How good are projection methods for convex feasibility problems?

We consider simple projection methods for solving convex feasibility problems. Both successive and sequential methods are considered, and heuristics to improve these are suggested. Unfortunately, particularly given the large literature which might make one think otherwise, numerical tests indicate that in general none of the variants considered are especially effective or competitive with more ...

متن کامل

Advances in Sparse Signal Recovery Methods

The general problem of obtaining a useful succinct representation (sketch) of some piece of data is ubiquitous; it has applications in signal acquisition, data compression, sub-linear space algorithms, etc. In this thesis we focus on sparse recovery, where the goal is to recover sparse vectors exactly, and to approximately recover nearly-sparse vectors. More precisely, from the short representa...

متن کامل

Hilbertian Convex Feasibility Problem: Convergence of Projection Methods∗

The classical problem of finding a point in the intersection of countably many closed and convex sets in a Hilbert space is considered. Extrapolated iterations of convex combinations of approximate projections onto subfamilies of sets are investigated to solve this problem. General hypotheses are made on the regularity of the sets and various strategies are considered to control the order in wh...

متن کامل

Sparse Signal Recovery from Quadratic Measurements via Convex Programming

In this paper we consider a system of quadratic equations |〈zj ,x〉|2 = bj , j = 1, ...,m, where x ∈ R is unknown while normal random vectors zj ∈ R and quadratic measurements bj ∈ R are known. The system is assumed to be underdetermined, i.e., m < n. We prove that if there exists a sparse solution x i.e., at most k components of x are non-zero, then by solving a convex optimization program, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2012

ISSN: 0377-0427

DOI: 10.1016/j.cam.2012.03.021